Linear equations for unordered data vectors in [D]^k→Z^d
Following a recently considered generalisation of linear equations to unordered-data vectors and to ordered-data vectors, we perform a further generalisation to data vectors that are functions from k-element subsets of the unordered-data set to vectors of integer numbers. These generalised equations naturally appear in the analysis of vector addition systems (or Petri nets) extended so that each token carries a set of unordered data. We show that nonnegative-integer solvability of linear equations is in nondeterministic exponential time while integer solvability is in polynomial time.
READ FULL TEXT