Linear Mixed-Effects Models for Non-Gaussian Repeated Measurement Data

04/07/2018
by   Özgür Asar, et al.
0

We consider the analysis of continuous repeated measurement outcomes that are collected through time, also known as longitudinal data. A standard framework for analysing data of this kind is a linear Gaussian mixed-effects model within which the outcome variable can be decomposed into fixed-effects, time-invariant and time-varying random-effects, and measurement noise. We develop methodology that, for the first time, allows any combination of these stochastic components to be non-Gaussian, using multivariate Normal variance-mean mixtures. We estimate parameters by max- imum likelihood, implemented with a novel, computationally efficient stochastic gradient algorithm. We obtain standard error estimates by inverting the observed Fisher-information matrix, and obtain the predictive distributions for the random-effects in both filtering (conditioning on past and current data) and smoothing (conditioning on all data) contexts. To implement these procedures, we intro- duce an R package, ngme. We re-analyse two data-sets, from cystic fibrosis and nephrology research, that were previously analysed using Gaussian linear mixed effects models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset