LinkDID: A Privacy-Preserving, Sybil-Resistant and Key-Recoverable Decentralized Identity Scheme
Decentralized identity mechanisms endeavor to endow users with complete sovereignty over their digital assets within the Web3 ecosystem. Unfortunately, this benefit frequently comes at the expense of users' credential and identity privacy. Additionally, existing schemes fail to resist Sybil attacks that have long plagued Web3, and lack reasonable key recovery mechanisms to regain control of digital assets after loss. In this work, we propose LinkDID, a privacy-preserving, Sybil-resistant, and key-recoverable decentralized identity scheme that supports selective disclosure of credentials for arbitrary predicates while maintaining privacy for credentials and identities. Through an identifier association mechanism, LinkDID can privately and forcibly aggregate users' identifiers, providing Sybil resistance without relying on any external data or collateral from benign users. To enable key recovery, LinkDID permits users to establish proofs of ownership for identifiers with lost keys and request an update of corresponding keys from the decentralized ledger. We provide a detailed theoretical analysis and security proofs of LinkDID, along with an exhaustive performance evaluation that shows its ability to complete interactions in less than 10 seconds on consumer-grade devices.
READ FULL TEXT