LocNet: Global localization in 3D point clouds for mobile robots
Global localization in 3D point clouds is a challenging problem of estimating the pose of robots without priori knowledge. In this paper, a solution to this problem is presented by achieving place recognition and metric pose estimation in the global priori map. Specifically, we present a semi-handcrafted representation learning method for LIDAR point cloud using siamese LocNets, which states the place recognition problem to a similarity modeling problem. With the final learned representations by LocNet, a global localization framework with range-only observations is proposed. To demonstrate the performance and effectiveness of our global localization system, KITTI dataset is employed for comparison with other algorithms, and also on our own multi-session datasets collected by long-time running robot to see the performance under semistatic dynamics. The result shows that our system can achieve both high accuracy and efficiency.
READ FULL TEXT