Logics with probabilistic team semantics and the Boolean negation

06/01/2023
by   Miika Hannula, et al.
0

We study the expressivity and the complexity of various logics in probabilistic team semantics with the Boolean negation. In particular, we study the extension of probabilistic independence logic with the Boolean negation, and a recently introduced logic FOPT. We give a comprehensive picture of the relative expressivity of these logics together with the most studied logics in probabilistic team semantics setting, as well as relating their expressivity to a numerical variant of second-order logic. In addition, we introduce novel entropy atoms and show that the extension of first-order logic by entropy atoms subsumes probabilistic independence logic. Finally, we obtain some results on the complexity of model checking, validity, and satisfiability of our logics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset