Low-memory Krylov subspace methods for optimal rational matrix function approximation

02/23/2022
by   Tyler Chen, et al.
0

We describe a Lanczos-based algorithm for approximating the product of a rational matrix function with a vector. This algorithm, which we call the Lanczos method for optimal rational matrix function approximation (Lanczos-OR), returns the optimal approximation from a Krylov subspace in a norm induced by the rational function's denominator, and can be computed using the information from a slightly larger Krylov subspace. We also provide a low-memory implementation which only requires storing a number of vectors proportional to the denominator degree of the rational function. Finally, we show that Lanczos-OR can also be used to derive algorithms for computing other matrix functions, including the matrix sign function and quadrature based rational function approximations. In many cases, it improves on the approximation quality of prior approaches, including the standard Lanczos method, with little additional computational overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset