Low-rank multi-parametric covariance identification

04/25/2020
by   Antoni Musolas, et al.
0

We propose a differential geometric construction for families of low-rank covariance matrices, via interpolation on low-rank matrix manifolds. In contrast with standard parametric covariance classes, these families offer significant flexibility for problem-specific tailoring via the choice of "anchor" matrices for the interpolation. Moreover, their low-rank facilitates computational tractability in high dimensions and with limited data. We employ these covariance families for both interpolation and identification, where the latter problem comprises selecting the most representative member of the covariance family given a data set. In this setting, standard procedures such as maximum likelihood estimation are nontrivial because the covariance family is rank-deficient; we resolve this issue by casting the identification problem as distance minimization. We demonstrate the power of these differential geometric families for interpolation and identification in a practical application: wind field covariance approximation for unmanned aerial vehicle navigation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset