LSB: A Lightweight Scalable BlockChain for IoT Security and Privacy
BlockChain (BC) has attracted tremendous attention due to its immutable nature and the associated security and privacy benefits. BC has the potential to overcome security and privacy challenges of Internet of Things (IoT). However, BC is computationally expensive, has limited scalability and incurs significant bandwidth overheads and delays which are not suited to the IoT context. We propose a tiered Lightweight Scalable BC (LSB) that is optimized for IoT requirements. We explore LSB in a smart home setting as a representative example for broader IoT applications. Low resource devices in a smart home benefit from a centralized manager that establishes shared keys for communication and processes all incoming and outgoing requests. LSB achieves decentralization by forming an overlay network where high resource devices jointly manage a public BC that ensures end-to-end privacy and security. The overlay is organized as distinct clusters to reduce overheads and the cluster heads are responsible for managing the public BC. LSB incorporates several optimizations which include algorithms for lightweight consensus, distributed trust and throughput management. Qualitative arguments demonstrate that LSB is resilient to several security attacks. Extensive simulations show that LSB decreases packet overhead and delay and increases BC scalability compared to relevant baselines.
READ FULL TEXT