Machine Learning for removing EEG artifacts: Setting the benchmark
Electroencephalograms (EEG) are often contaminated by artifacts which make interpreting them more challenging for clinicians. Hence, automated artifact recognition systems have the potential to aid the clinical workflow. In this abstract, we share the first results on applying various machine learning algorithms to the recently released world's largest open-source artifact recognition dataset. We envision that these results will serve as a benchmark for researchers who might work with this dataset in future.
READ FULL TEXT