Machine Learning with Abstention for Automated Liver Disease Diagnosis
This paper presents a novel approach for detection of liver abnormalities in an automated manner using ultrasound images. For this purpose, we have implemented a machine learning model that can not only generate labels (normal and abnormal) for a given ultrasound image but it can also detect when its prediction is likely to be incorrect. The proposed model abstains from generating the label of a test example if it is not confident about its prediction. Such behavior is commonly practiced by medical doctors who, when given insufficient information or a difficult case, can chose to carry out further clinical or diagnostic tests before generating a diagnosis. However, existing machine learning models are designed in a way to always generate a label for a given example even when the confidence of their prediction is low. We have proposed a novel stochastic gradient based solver for the learning with abstention paradigm and use it to make a practical, state of the art method for liver disease classification. The proposed method has been benchmarked on a data set of approximately 100 patients from MINAR, Multan, Pakistan and our results show that the proposed scheme offers state of the art classification performance.
READ FULL TEXT