MALIGN: Adversarially Robust Malware Family Detection using Sequence Alignment
We propose MALIGN, a novel malware family detection approach inspired by genome sequence alignment. MALIGN encodes malware using four nucleotides and then uses genome sequence alignment approaches to create a signature of a malware family based on the code fragments conserved in the family making it robust to evasion by modification and addition of content. Moreover, unlike previous approaches based on sequence alignment, our method uses a multiple whole-genome alignment tool that protects against adversarial attacks such as code insertion, deletion or modification. Our approach outperforms state-of-the-art machine learning based malware detectors and demonstrates robustness against trivial adversarial attacks. MALIGN also helps identify the techniques malware authors use to evade detection.
READ FULL TEXT