Managing multi-facet bias in collaborative filtering recommender systems
Due to the extensive growth of information available online, recommender systems play a more significant role in serving people's interests. Traditional recommender systems mostly use an accuracy-focused approach to produce recommendations. Today's research suggests that this single-dimension approach can lead the system to be biased against a series of items with certain attributes. Biased recommendations across groups of items can endanger the interests of item providers along with causing user dissatisfaction with the system. This study aims to manage a new type of intersectional bias regarding the geographical origin and popularity of items in the output of state-of-the-art collaborative filtering recommender algorithms. We introduce an algorithm called MFAIR, a multi-facet post-processing bias mitigation algorithm to alleviate these biases. Extensive experiments on two real-world datasets of movies and books, enriched with the items' continents of production, show that the proposed algorithm strikes a reasonable balance between accuracy and both types of the mentioned biases. According to the results, our proposed approach outperforms a well-known competitor with no or only a slight loss of efficiency.
READ FULL TEXT