ManVatar : Fast 3D Head Avatar Reconstruction Using Motion-Aware Neural Voxels

11/23/2022
by   Yuelang Xu, et al.
0

With NeRF widely used for facial reenactment, recent methods can recover photo-realistic 3D head avatar from just a monocular video. Unfortunately, the training process of the NeRF-based methods is quite time-consuming, as MLP used in the NeRF-based methods is inefficient and requires too many iterations to converge. To overcome this problem, we propose ManVatar, a fast 3D head avatar reconstruction method using Motion-Aware Neural Voxels. ManVatar is the first to decouple expression motion from canonical appearance for head avatar, and model the expression motion by neural voxels. In particular, the motion-aware neural voxels is generated from the weighted concatenation of multiple 4D tensors. The 4D tensors semantically correspond one-to-one with 3DMM expression bases and share the same weights as 3DMM expression coefficients. Benefiting from our novel representation, the proposed ManVatar can recover photo-realistic head avatars in just 5 minutes (implemented with pure PyTorch), which is significantly faster than the state-of-the-art facial reenactment methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset