Market Impact in Trader-Agents: Adding Multi-Level Order-Flow Imbalance-Sensitivity to Automated Trading Systems

12/23/2020
by   Zhen Zhang, et al.
0

Financial markets populated by human traders often exhibit "market impact", where the traders' quote-prices move in the direction of anticipated change, before any transaction has taken place, as an immediate reaction to the arrival of a large (i.e., "block") buy or sell order in the market: e.g., traders in the market know that a block buy order will push the price up, and so they immediately adjust their quote-prices upwards. Most major financial markets now involve many "robot traders", autonomous adaptive software agents, rather than humans. This paper explores how to give such trader-agents a reliable anticipatory sensitivity to block orders, such that markets populated entirely by robot traders also show market-impact effects. In a 2019 publication Church Cliff presented initial results from a simple deterministic robot trader, ISHV, which exhibits this market impact effect via monitoring a metric of imbalance between supply and demand in the market. The novel contributions of our paper are: (a) we critique the methods used by Church Cliff, revealing them to be weak, and argue that a more robust measure of imbalance is required; (b) we argue for the use of multi-level order-flow imbalance (MLOFI: Xu et al., 2019) as a better basis for imbalance-sensitive robot trader-agents; and (c) we demonstrate the use of the more robust MLOFI measure in extending ISHV, and also the well-known AA and ZIP trading-agent algorithms (which have both been previously shown to consistently outperform human traders). We demonstrate that the new imbalance-sensitive trader-agents introduced here do exhibit market impact effects, and hence are better-suited to operating in markets where impact is a factor of concern or interest, but do not suffer the weaknesses of the methods used by Church Cliff. The source-code for our work reported here is freely available on GitHub.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro