Markov Random Field Segmentation of Brain MR Images

03/18/2009
by   Karsten Held, et al.
0

We describe a fully-automatic 3D-segmentation technique for brain MR images. Using Markov random fields the segmentation algorithm captures three important MR features, i.e. non-parametric distributions of tissue intensities, neighborhood correlations and signal inhomogeneities. Detailed simulations and real MR images demonstrate the performance of the segmentation algorithm. The impact of noise, inhomogeneity, smoothing and structure thickness is analyzed quantitatively. Even single echo MR images are well classified into gray matter, white matter, cerebrospinal fluid, scalp-bone and background. A simulated annealing and an iterated conditional modes implementation are presented. Keywords: Magnetic Resonance Imaging, Segmentation, Markov Random Fields

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset