Maximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings

12/31/2012
by   Sagar Kale, et al.
0

Submodular functions have many applications. Matchings have many applications. The bitext word alignment problem can be modeled as the problem of maximizing a nonnegative, monotone, submodular function constrained to matchings in a complete bipartite graph where each vertex corresponds to a word in the two input sentences and each edge represents a potential word-to-word translation. We propose a more general problem of maximizing a nonnegative, monotone, submodular function defined on the edge set of a complete graph constrained to matchings; we call this problem the CSM-Matching problem. CSM-Matching also generalizes the maximum-weight matching problem, which has a polynomial-time algorithm; however, we show that it is NP-hard to approximate CSM-Matching within a factor of e/(e-1) by reducing the max k-cover problem to it. Our main result is a simple, greedy, 3-approximation algorithm for CSM-Matching. Then we reduce CSM-Matching to maximizing a nonnegative, monotone, submodular function over two matroids, i.e., CSM-2-Matroids. CSM-2-Matroids has a (2+epsilon)-approximation algorithm - called LSV2. We show that we can find a (4+epsilon)-approximate solution to CSM-Matching using LSV2. We extend this approach to similar problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro