Maximum Eccentric Connectivity Index for Graphs with Given Diameter

08/30/2018
by   Pierre Hauweele, et al.
0

The eccentricity of a vertex v in a graph G is the maximum distance between v and any other vertex of G. The diameter of a graph G is the maximum eccentricity of a vertex in G. The eccentric connectivity index of a connected graph is the sum over all vertices of the product between eccentricity and degree. Given two integers n and D with D≤ n-1, we characterize those graphs which have the largest eccentric connectivity index among all connected graphs of order n and diameter D. As a corollary, we also characterize those graphs which have the largest eccentric connectivity index among all connected graphs of a given order n.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset