Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM

07/02/2021
by   Zhou Fan, et al.
0

Motivated by applications to single-particle cryo-electron microscopy (cryo-EM), we study several problems of function estimation in a low SNR regime, where samples are observed under random rotations of the function domain. In a general framework of group orbit estimation with linear projection, we describe a stratification of the Fisher information eigenvalues according to a sequence of transcendence degrees in the invariant algebra, and relate critical points of the log-likelihood landscape to a sequence of method-of-moments optimization problems. This extends previous results for a discrete rotation group without projection. We then compute these transcendence degrees and the forms of these moment optimization problems for several examples of function estimation under SO(2) and SO(3) rotations, including a simplified model of cryo-EM as introduced by Bandeira, Blum-Smith, Kileel, Perry, Weed, and Wein. For several of these examples, we affirmatively resolve numerical conjectures that 3^rd-order moments are sufficient to locally identify a generic signal up to its rotational orbit. For low-dimensional approximations of the electric potential maps of two small protein molecules, we empirically verify that the noise-scalings of the Fisher information eigenvalues conform with these theoretical predictions over a range of SNR, in a model of SO(3) rotations without projection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset