MaxMin-L2-SVC-NCH: A New Method to Train Support Vector Classifier with the Selection of Model's Parameters

07/14/2023
by   Linkai Luo, et al.
0

The selection of model's parameters plays an important role in the application of support vector classification (SVC). The commonly used method of selecting model's parameters is the k-fold cross validation with grid search (CV). It is extremely time-consuming because it needs to train a large number of SVC models. In this paper, a new method is proposed to train SVC with the selection of model's parameters. Firstly, training SVC with the selection of model's parameters is modeled as a minimax optimization problem (MaxMin-L2-SVC-NCH), in which the minimization problem is an optimization problem of finding the closest points between two normal convex hulls (L2-SVC-NCH) while the maximization problem is an optimization problem of finding the optimal model's parameters. A lower time complexity can be expected in MaxMin-L2-SVC-NCH because CV is abandoned. A gradient-based algorithm is then proposed to solve MaxMin-L2-SVC-NCH, in which L2-SVC-NCH is solved by a projected gradient algorithm (PGA) while the maximization problem is solved by a gradient ascent algorithm with dynamic learning rate. To demonstrate the advantages of the PGA in solving L2-SVC-NCH, we carry out a comparison of the PGA and the famous sequential minimal optimization (SMO) algorithm after a SMO algorithm and some KKT conditions for L2-SVC-NCH are provided. It is revealed that the SMO algorithm is a special case of the PGA. Thus, the PGA can provide more flexibility. The comparative experiments between MaxMin-L2-SVC-NCH and the classical parameter selection models on public datasets show that MaxMin-L2-SVC-NCH greatly reduces the number of models to be trained and the test accuracy is not lost to the classical models. It indicates that MaxMin-L2-SVC-NCH performs better than the other models. We strongly recommend MaxMin-L2-SVC-NCH as a preferred model for SVC task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset