Melody: Generating and Visualizing Machine Learning Model Summary to Understand Data and Classifiers Together
With the increasing sophistication of machine learning models, there are growing trends of developing model explanation techniques that focus on only one instance (local explanation) to ensure faithfulness to the original model. While these techniques provide accurate model interpretability on various data primitive (e.g., tabular, image, or text), a holistic Explainable Artificial Intelligence (XAI) experience also requires a global explanation of the model and dataset to enable sensemaking in different granularity. Thus, there is a vast potential in synergizing the model explanation and visual analytics approaches. In this paper, we present MELODY, an interactive algorithm to construct an optimal global overview of the model and data behavior by summarizing the local explanations using information theory. The result (i.e., an explanation summary) does not require additional learning models, restrictions of data primitives, or the knowledge of machine learning from the users. We also design MELODY UI, an interactive visual analytics system to demonstrate how the explanation summary connects the dots in various XAI tasks from a global overview to local inspections. We present three usage scenarios regarding tabular, image, and text classifications to illustrate how to generalize model interpretability of different data. Our experiments show that our approaches: (1) provides a better explanation summary compared to a straightforward information-theoretic summarization and (2) achieves a significant speedup in the end-to-end data modeling pipeline.
READ FULL TEXT