Meta-Meta-Classification for One-Shot Learning

04/17/2020
by   Arkabandhu Chowdhury, et al.
0

We present a new approach, called meta-meta-classification, to learning in small-data settings. In this approach, one uses a large set of learning problems to design an ensemble of learners, where each learner has high bias and low variance and is skilled at solving a specific type of learning problem. The meta-meta classifier learns how to examine a given learning problem and combine the various learners to solve the problem. The meta-meta-learning approach is especially suited to solving few-shot learning tasks, as it is easier to learn to classify a new learning problem with little data than it is to apply a learning algorithm to a small data set. We evaluate the approach on a one-shot, one-class-versus-all classification task and show that it is able to outperform traditional meta-learning as well as ensembling approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset