Method-Level Bug Severity Prediction using Source Code Metrics and LLMs

09/06/2023
by   Ehsan Mashhadi, et al.
0

In the past couple of decades, significant research efforts are devoted to the prediction of software bugs. However, most existing work in this domain treats all bugs the same, which is not the case in practice. It is important for a defect prediction method to estimate the severity of the identified bugs so that the higher-severity ones get immediate attention. In this study, we investigate source code metrics, source code representation using large language models (LLMs), and their combination in predicting bug severity labels of two prominent datasets. We leverage several source metrics at method-level granularity to train eight different machine-learning models. Our results suggest that Decision Tree and Random Forest models outperform other models regarding our several evaluation metrics. We then use the pre-trained CodeBERT LLM to study the source code representations' effectiveness in predicting bug severity. CodeBERT finetuning improves the bug severity prediction results significantly in the range of 29 to the best classic prediction model on source code metric. Finally, we integrate source code metrics into CodeBERT as an additional input, using our two proposed architectures, which both enhance the CodeBERT model effectiveness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset