Methods and applications of PDMP samplers with boundary conditions
We extend Monte Carlo samplers based on piecewise deterministic Markov processes (PDMP samplers) by formally defining different boundary conditions such as sticky floors, soft and hard walls and teleportation portals. This allows PDMP samplers to target measures with piecewise-smooth densities relative to mixtures of Dirac and continuous components and measures supported on disconnected regions or regions which are difficult to reach with continuous paths. This is achieved by specifying the transition kernel which governs the behaviour of standard PDMPs when reaching a boundary. We determine a sufficient condition for the kernel at the boundary in terms of the skew-detailed balance condition and give concrete examples. The probabilities to cross a boundary can be tuned by introducing a piecewise constant speed-up function which modifies the velocity of the process upon crossing the boundary without extra computational cost. We apply this new class of processes to two illustrative applications in epidemiology and statistical mechanics.
READ FULL TEXT