MIMO Operations in Molecular Communications: Theory, Prototypes, and Open Challenges
The Internet of Bio-nano Things is a significant development for next generation communication technologies. Because conventional wireless communication technologies face challenges in realizing new applications (e.g., in-body area networks for health monitoring) and necessitate the substitution of information carriers, researchers have shifted their interest to molecular communications (MC). Although remarkable progress has been made in this field over the last decade, advances have been far from acceptable for the achievement of its application objectives. A crucial problem of MC is the low data rate and high error rate inherent in particle dynamics specifications, in contrast to wave-based conventional communications. Therefore, it is important to investigate the resources by which MC can obtain additional information paths and provide strategies to exploit these resources. This study aims to examine techniques involving resource aggregation and exploitation to provide prospective directions for future progress in MC. In particular, we focus on state-of-the-art studies on multiple-input multiple-output (MIMO) systems. We discuss the possible advantages of applying MIMO to various MC system models. Furthermore, we survey various studies that aimed to achieve MIMO gains for the respective models, from theoretical background to prototypes. Finally, we conclude this study by summarizing the challenges that need to be addressed.
READ FULL TEXT