Minimizing Age-of-Information for Fog Computing-supported Vehicular Networks with Deep Q-learning

04/04/2020
by   Maohong Chen, et al.
1

Connected vehicular network is one of the key enablers for next generation cloud/fog-supported autonomous driving vehicles. Most connected vehicular applications require frequent status updates and Age of Information (AoI) is a more relevant metric to evaluate the performance of wireless links between vehicles and cloud/fog servers. This paper introduces a novel proactive and data-driven approach to optimize the driving route with a main objective of guaranteeing the confidence of AoI. In particular, we report a study on three month measurements of a multi-vehicle campus shuttle system connected to cloud/fog servers via a commercial LTE network. We establish empirical models for AoI in connected vehicles and investigate the impact of major factors on the performance of AoI. We also propose a Deep Q-Learning Netwrok (DQN)-based algorithm to decide the optimal driving route for each connected vehicle with maximized confidence level. Numerical results show that the proposed approach can lead to a significant improvement on the AoI confidence for various types of services supported.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset