Minimum Message Length Clustering Using Gibbs Sampling

01/16/2013
by   Ian Davidson, et al.
0

The K-Mean and EM algorithms are popular in clustering and mixture modeling, due to their simplicity and ease of implementation. However, they have several significant limitations. Both coverage to a local optimum of their respective objective functions (ignoring the uncertainty in the model space), require the apriori specification of the number of classes/clsuters, and are inconsistent. In this work we overcome these limitations by using the Minimum Message Length (MML) principle and a variation to the K-Means/EM observation assignment and parameter calculation scheme. We maintain the simplicity of these approaches while constructing a Bayesian mixture modeling tool that samples/searches the model space using a Markov Chain Monte Carlo (MCMC) sampler known as a Gibbs sampler. Gibbs sampling allows us to visit each model according to its posterior probability. Therefore, if the model space is multi-modal we will visit all models and not get stuck in local optima. We call our approach multiple chains at equilibrium (MCE) MML sampling.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset