Mismatched Data Detection in Massive MU-MIMO
We investigate mismatched data detection for massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems in which the prior distribution of the transmit signal used in the data detector differs from the true prior. In order to minimize the performance loss caused by the prior mismatch, we include a tuning stage into the recently proposed large-MIMO approximate message passing (LAMA) algorithm, which enables the development of data detectors with optimal as well as sub-optimal parameter tuning. We show that carefully-designed priors enable the design of simpler and computationally more efficient data detection algorithms compared to LAMA that uses the optimal prior, while achieving near-optimal error-rate performance. In particular, we demonstrate that a hardware-friendly approximation of the exact prior enables the design of low-complexity data detectors that achieve near individually-optimal performance. Furthermore, for Gaussian priors and uniform priors within a hypercube covering the quadrature amplitude modulation (QAM) constellation, our performance analysis recovers classical and recent results on linear and non-linear massive MU-MIMO data detection, respectively.
READ FULL TEXT