Mismatched Models to Lower Bound the Capacity of Dual-Polarization Optical Fiber Channels

Regular perturbation is applied to the Manakov equation and motivates a generalized correlated phase-and-additive noise model for wavelength-division multiplexing over dual-polarization optical fiber channels. The model includes three hidden Gauss-Markov processes: phase noise, polarization rotation, and additive noise. Particle filtering is used to compute lower bounds on the capacity of multi-carrier communication with frequency-dependent powers and delays. A gain of 0.17 bits/s/Hz/pol in spectral efficiency or 0.8 dB in power efficiency is achieved with respect to existing models at their peak data rate. Frequency-dependent delays also increase the spectral efficiency of single-polarization channels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset