MixPath: A Unified Approach for One-shot Neural Architecture Search
The expressiveness of search space is a key concern in neural architecture search (NAS). Previous block-level approaches mainly focus on searching networks that chain one operation after another. Incorporating multi-path search space with the one-shot doctrine remains untackled. In this paper, we investigate the supernet behavior under the multi-path setting, which we call MixPath. For a sampled training, simply switching multiple paths on and off incurs severe feature inconsistency which deteriorates the convergence. To remedy this effect, we employ what we term as shadow batch normalizations (SBN) to follow various path patterns. Experiments performed on CIFAR-10 show that our approach is effective regardless of the number of allowable paths. Further experiments are conducted on ImageNet to have a fair comparison with the latest NAS methods. Our code will be available https://github.com/xiaomi-automl/MixPath.git .
READ FULL TEXT