Mixture-of-Parents Maximum Entropy Markov Models

06/20/2012
by   David S. Rosenberg, et al.
0

We present the mixture-of-parents maximum entropy Markov model (MoP-MEMM), a class of directed graphical models extending MEMMs. The MoP-MEMM allows tractable incorporation of long-range dependencies between nodes by restricting the conditional distribution of each node to be a mixture of distributions given the parents. We show how to efficiently compute the exact marginal posterior node distributions, regardless of the range of the dependencies. This enables us to model non-sequential correlations present within text documents, as well as between interconnected documents, such as hyperlinked web pages. We apply the MoP-MEMM to a named entity recognition task and a web page classification task. In each, our model shows significant improvement over the basic MEMM, and is competitive with other long-range sequence models that use approximate inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset