ML-Aided Collision Recovery for UHF-RFID Systems

02/23/2022
by   Talha Akyildiz, et al.
0

We propose a collision recovery algorithm with the aid of machine learning (ML-aided) for passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) systems. The proposed method aims at recovering the tags under collision to improve the system performance. We first estimate the number of tags from the collided signal by utilizing machine learning tools and show that the number of colliding tags can be estimated with high accuracy. Second, we employ a simple yet effective deep learning model to find the experienced channel coefficients. The proposed method allows the reader to separate each tag's signal from the received one by applying maximum likelihood decoding. We perform simulations to illustrate that the use of deep learning is highly beneficial and demonstrate that the proposed approach boosts the throughput performance of the standard framed slotted ALOHA (FSA) protocol from 0.368 to 1.756, where the receiver is equipped with a single antenna and capable of decoding up to 4 tags.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset