Model-aided Deep Neural Network for Source Number Detection

09/29/2019
by   Yuwen Yang, et al.
0

Source number detection is a critical problem in array signal processing. Conventional model-driven methods e.g., Akaikes information criterion (AIC) and minimum description length (MDL), suffer from severe performance degradation when the number of snapshots is small or the signal-to-noise ratio (SNR) is low. In this paper, we exploit the model-aided based deep neural network (DNN) to estimate the source number. Specifically, we first propose the eigenvalue based regression network (ERNet) and classification network (ECNet) to estimate the number of non-coherent sources, where the eigenvalues of the received signal covariance matrix and the source number are used as the input and the supervise label of the networks, respectively. Then, we extend the ERNet and ECNet for estimating the number of coherent sources, where the forward-backward spatial smoothing (FBSS) scheme is adopted to improve the performance of ERNet and ECNet. Numerical results demonstrate the outstanding performance of ERNet and ECNet over the conventional AIC and MDL methods as well as their excellent generalization capability, which also shows their great potentials for practical applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset