Model Compression for DNN-Based Text-Independent Speaker Verification Using Weight Quantization

10/31/2022
by   Jingyu Li, et al.
0

DNN-based models achieve high performance in the speaker verification (SV) task with substantial computation costs. The model size is an essential concern in applying models on resource-constrained devices, while model compression for SV models has not been studied extensively in previous works. Weight quantization is exploited to compress DNN-based speaker embedding extraction models in this paper. Uniform and Powers-of-Two quantization are utilized in the experiments. The results on VoxCeleb show that the weight quantization can decrease the size of ECAPA-TDNN and ResNet by 4 times with insignificant performance decline. The quantized 4-bit ResNet achieves similar performance to the original model with an 8 times smaller size. We empirically show that the performance of ECAPA-TDNN is more sensitive than ResNet to quantization due to the difference in weight distribution. The experiments on CN-Celeb also demonstrate that quantized models are robust for SV in the language mismatch scenario.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset