Modified BDF2 schemes for subdiffusion models with a singular source term
The aim of this paper is to study the time stepping scheme for approximately solving the subdiffusion equation with a weakly singular source term. In this case, many popular time stepping schemes, including the correction of high-order BDF methods, may lose their high-order accuracy. To fill in this gap, in this paper, we develop a novel time stepping scheme, where the source term is regularized by using a k-fold integral-derivative and the equation is discretized by using a modified BDF2 convolution quadrature. We prove that the proposed time stepping scheme is second-order, even if the source term is nonsmooth in time and incompatible with the initial data. Numerical results are presented to support the theoretical results.
READ FULL TEXT