Momentum-based Gradient Methods in Multi-objective Recommender Systems

09/10/2020
by   Blagoj Mitrevski, et al.
0

Multi-objective gradient methods are becoming the standard for solving multi-objective problems. Among others, they show promising results in developing multi-objective recommender systems with both correlated and uncorrelated objectives. Classic multi-gradient descent usually relies on the combination of the gradients, not including the computation of first and second moments of the gradients. This leads to a brittle behavior and misses important areas in the solution space. In this work, we create a multi-objective Adamize method that leverage the benefits of the Adam optimizer in single-objective problems. This corrects and stabilizes the gradients of every objective before calculating a common gradient descent vector that optimizes all the objectives simultaneously. We evaluate the benefits of Multi-objective Adamize on two multi-objective recommender systems and for three different objective combinations, both correlated or uncorrelated. We report significant improvements, measured with three different Pareto front metrics: hypervolume, coverage, and spacing. Finally, we show that the Adamized Pareto front strictly dominates the previous one on multiple objective pairs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset