Monolingual and Cross-Lingual Knowledge Transfer for Topic Classification

06/13/2023
by   Dmitry Karpov, et al.
0

This article investigates the knowledge transfer from the RuQTopics dataset. This Russian topical dataset combines a large sample number (361,560 single-label, 170,930 multi-label) with extensive class coverage (76 classes). We have prepared this dataset from the "Yandex Que" raw data. By evaluating the RuQTopics - trained models on the six matching classes of the Russian MASSIVE subset, we have proved that the RuQTopics dataset is suitable for real-world conversational tasks, as the Russian-only models trained on this dataset consistently yield an accuracy around 85% on this subset. We also have figured out that for the multilingual BERT, trained on the RuQTopics and evaluated on the same six classes of MASSIVE (for all MASSIVE languages), the language-wise accuracy closely correlates (Spearman correlation 0.773 with p-value 2.997e-11) with the approximate size of the pretraining BERT's data for the corresponding language. At the same time, the correlation of the language-wise accuracy with the linguistical distance from Russian is not statistically significant.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset