MORTAL: A Tool of Automatically Designing Relational Storage Schemas for Multi-model Data through Reinforcement Learning

09/01/2021
by   Gongsheng Yuan, et al.
0

Considering relational databases having powerful capabilities in handling security, user authentication, query optimization, etc., several commercial and academic frameworks reuse relational databases to store and query semi-structured data (e.g., XML, JSON) or graph data (e.g., RDF, property graph). However, these works concentrate on managing one of the above data models with RDBMSs. That is, it does not exploit the underlying tools to automatically generate the relational schema for storing multi-model data. In this demonstration, we present a novel reinforcement learning-based tool called MORTAL. Specifically, given multi-model data containing different data models and a set of queries, it could automatically design a relational schema to store these data while having a great query performance. To demonstrate it clearly, we are centered around the following modules: generating initial state based on loaded multi-model data, influencing learning process by setting parameters, controlling generated relational schema through providing semantic constraints, improving the query performance of relational schema by specifying queries, and a highly interactive interface for showing query performance and storage consumption when users adjust the generated relational schema.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset