Most Classic Problems Remain NP-hard on Relative Neighborhood Graphs and their Relatives

07/09/2021
by   Pascal Kunz, et al.
0

Proximity graphs have been studied for several decades, motivated by applications in computational geometry, geography, data mining, and many other fields. However, the computational complexity of classic graph problems on proximity graphs mostly remained open. We now study 3-Colorability, Dominating Set, Feedback Vertex Set, Hamiltonian Cycle, and Independent Set on the proximity graph classes relative neighborhood graphs, Gabriel graphs, and relatively closest graphs. We prove that all of the problems remain NP-hard on these graphs, except for 3-Colorability and Hamiltonian Cycle on relatively closest graphs, where the former is trivial and the latter is left open. Moreover, for every NP-hard case we additionally show that no 2^o(n^1/4)-time algorithm exists unless the ETH fails, where n denotes the number of vertices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset