Motif Cut Sparsifiers
A motif is a frequently occurring subgraph of a given directed or undirected graph G. Motifs capture higher order organizational structure of G beyond edge relationships, and, therefore, have found wide applications such as in graph clustering, community detection, and analysis of biological and physical networks to name a few. In these applications, the cut structure of motifs plays a crucial role as vertices are partitioned into clusters by cuts whose conductance is based on the number of instances of a particular motif, as opposed to just the number of edges, crossing the cuts. In this paper, we introduce the concept of a motif cut sparsifier. We show that one can compute in polynomial time a sparse weighted subgraph G' with only O(n/ϵ^2) edges such that for every cut, the weighted number of copies of M crossing the cut in G' is within a 1+ϵ factor of the number of copies of M crossing the cut in G, for every constant size motif M. Our work carefully combines the viewpoints of both graph sparsification and hypergraph sparsification. We sample edges which requires us to extend and strengthen the concept of cut sparsifiers introduced in the seminal work of to the motif setting. We adapt the importance sampling framework through the viewpoint of hypergraph sparsification by deriving the edge sampling probabilities from the strong connectivity values of a hypergraph whose hyperedges represent motif instances. Finally, an iterative sparsification primitive inspired by both viewpoints is used to reduce the number of edges in G to nearly linear. In addition, we present a strong lower bound ruling out a similar result for sparsification with respect to induced occurrences of motifs.
READ FULL TEXT