Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks

08/17/2018
by   Nemanja Djuric, et al.
0

Recent algorithmic improvements and hardware breakthroughs resulted in a number of success stories in the field of AI impacting our daily lives. However, despite its ubiquity AI is only just starting to make advances in what may arguably have the largest impact thus far, the nascent field of autonomous driving. In this work we discuss this important topic and address one of crucial aspects of the emerging area, the problem of predicting future state of autonomous vehicle's surrounding necessary for safe and efficient operations. We introduce a deep learning-based approach that takes into account current state of traffic actors and produces rasterized representations of each actor's vicinity. The raster images are then used by deep convolutional models to infer future movement of actors while accounting for inherent uncertainty of the prediction task. Extensive experiments on real-world data strongly suggest benefits of the proposed approach. Moreover, following successful tests the system was deployed to a fleet of autonomous vehicles.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset