MOVE: Unsupervised Movable Object Segmentation and Detection
We introduce MOVE, a novel method to segment objects without any form of supervision. MOVE exploits the fact that foreground objects can be shifted locally relative to their initial position and result in realistic (undistorted) new images. This property allows us to train a segmentation model on a dataset of images without annotation and to achieve state of the art (SotA) performance on several evaluation datasets for unsupervised salient object detection and segmentation. In unsupervised single object discovery, MOVE gives an average CorLoc improvement of 7.2 unsupervised class-agnostic object detection it gives a relative AP improvement of 53 (e.g. from DINO or MAE), an inpainting network (based on the Masked AutoEncoder) and adversarial training.
READ FULL TEXT