MS-Ranker: Accumulating Evidence from Potentially Correct Candidates for Answer Selection

10/10/2020
by   Yingxue Zhang, et al.
0

As conventional answer selection (AS) methods generally match the question with each candidate answer independently, they suffer from the lack of matching information between the question and the candidate. To address this problem, we propose a novel reinforcement learning (RL) based multi-step ranking model, named MS-Ranker, which accumulates information from potentially correct candidate answers as extra evidence for matching the question with a candidate. In specific, we explicitly consider the potential correctness of candidates and update the evidence with a gating mechanism. Moreover, as we use a listwise ranking reward, our model learns to pay more attention to the overall performance. Experiments on two benchmarks, namely WikiQA and SemEval-2016 CQA, show that our model significantly outperforms existing methods that do not rely on external resources.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset