Multi-Modal Causal Inference with Deep Structural Equation Models

03/18/2022
by   Shachi Deshpande, et al.
0

Accounting for the effects of confounders is one of the central challenges in causal inference. Unstructured multi-modal data (images, time series, text) contains valuable information about diverse types of confounders, yet it is typically left unused by most existing methods. This paper seeks to develop techniques that leverage this unstructured data within causal inference to correct for additional confounders that may otherwise not be accounted for. We formalize this task and we propose algorithms based on deep structural equations that treat multi-modal unstructured data as proxy variables. We empirically demonstrate on tasks in genomics and healthcare that unstructured data can be used to correct for diverse sources of confounding, potentially enabling the use of large amounts of data that were previously not used in causal inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset