Multi-stage Pre-training over Simplified Multimodal Pre-training Models
Multimodal pre-training models, such as LXMERT, have achieved excellent results in downstream tasks. However, current pre-trained models require large amounts of training data and have huge model sizes, which make them difficult to apply in low-resource situations. How to obtain similar or even better performance than a larger model under the premise of less pre-training data and smaller model size has become an important problem. In this paper, we propose a new Multi-stage Pre-training (MSP) method, which uses information at different granularities from word, phrase to sentence in both texts and images to pre-train the model in stages. We also design several different pre-training tasks suitable for the information granularity in different stage in order to efficiently capture the diverse knowledge from a limited corpus. We take a Simplified LXMERT (LXMERT- S), which has only 45.9 LXMERT model and 11.76 MSP method. Experimental results show that our method achieves comparable performance to the original LXMERT model in all downstream tasks, and even outperforms the original model in Image-Text Retrieval task.
READ FULL TEXT