Multi-view knowledge distillation transformer for human action recognition

03/25/2023
by   Ying-Chen Lin, et al.
0

Recently, Transformer-based methods have been utilized to improve the performance of human action recognition. However, most of these studies assume that multi-view data is complete, which may not always be the case in real-world scenarios. Therefore, this paper presents a novel Multi-view Knowledge Distillation Transformer (MKDT) framework that consists of a teacher network and a student network. This framework aims to handle incomplete human action problems in real-world applications. Specifically, the multi-view knowledge distillation transformer uses a hierarchical vision transformer with shifted windows to capture more spatial-temporal information. Experimental results demonstrate that our framework outperforms the CNN-based method on three public datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro