Multilingual Entity and Relation Extraction from Unified to Language-specific Training
Entity and relation extraction is a key task in information extraction, where the output can be used for downstream NLP tasks. Existing approaches for entity and relation extraction tasks mainly focus on the English corpora and ignore other languages. Thus, it is critical to improving performance in a multilingual setting. Meanwhile, multilingual training is usually used to boost cross-lingual performance by transferring knowledge from languages (e.g., high-resource) to other (e.g., low-resource) languages. However, language interference usually exists in multilingual tasks as the model parameters are shared among all languages. In this paper, we propose a two-stage multilingual training method and a joint model called Multilingual Entity and Relation Extraction framework (mERE) to mitigate language interference across languages. Specifically, we randomly concatenate sentences in different languages to train a Language-universal Aggregator (LA), which narrows the distance of embedding representations by obtaining the unified language representation. Then, we separate parameters to mitigate interference via tuning a Language-specific Switcher (LS), which includes several independent sub-modules to refine the language-specific feature representation. After that, to enhance the relational triple extraction, the sentence representations concatenated with the relation feature are used to recognize the entities. Extensive experimental results show that our method outperforms both the monolingual and multilingual baseline methods. Besides, we also perform detailed analysis to show that mERE is lightweight but effective on relational triple extraction and mERE is easy to transfer to other backbone models of multi-field tasks, which further demonstrates the effectiveness of our method.
READ FULL TEXT