Multimodal N-of-1 trials: A Novel Personalized Healthcare Design

02/15/2023
by   Jingjing Fu, et al.
0

N-of-1 trials aim to estimate treatment effects on the individual level and can be applied to personalize a wide range of physical and digital interventions in mHealth. In this study, we propose and apply a framework for multimodal N-of-1 trials in order to allow the inclusion of health outcomes assessed through images, audio or videos. We illustrate the framework in a series of N-of-1 trials that investigate the effect of acne creams on acne severity assessed through pictures. For the analysis, we compare an expert-based manual labelling approach with different deep learning-based pipelines where in a first step, we train and fine-tune convolutional neural networks (CNN) on the images. Then, we use a linear mixed model on the scores obtained in the first step in order to test the effectiveness of the treatment. The results show that the CNN-based test on the images provides a similar conclusion as tests based on manual expert ratings of the images, and identifies a treatment effect in one individual. This illustrates that multimodal N-of-1 trials can provide a powerful way to identify individual treatment effects and can enable large-scale studies of a large variety of health outcomes that can be actively and passively assessed using technological advances in order to personalized health interventions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset