Multiscale stochastic reduced-order model for uncertainty propagation using Fokker-Planck equation with microstructure evolution applications

03/30/2020
by   Anh Tran, et al.
0

Uncertainty involved in computational materials modeling needs to be quantified to enhance the credibility of predictions. Tracking the propagation of model-form and parameter uncertainty for each simulation step, however, is computationally expensive. In this paper, a multiscale stochastic reduced-order model (ROM) is proposed to propagate the uncertainty as a stochastic process with Gaussian noise. The quantity of interest (QoI) is modeled by a non-linear Langevin equation, where its associated probability density function is propagated using Fokker-Planck equation. The drift and diffusion coefficients of the Fokker-Planck equation are trained and tested from the time-series dataset obtained from direct numerical simulations. Considering microstructure descriptors in the microstructure evolution as QoIs, we demonstrate our proposed methodology in three integrated computational materials engineering (ICME) models: kinetic Monte Carlo, phase field, and molecular dynamics simulations. It is demonstrated that once calibrated correctly using the available time-series datasets from these ICME models, the proposed ROM is capable of propagating the microstructure descriptors dynamically, and the results agree well with the ICME models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset