Multivariate Analysis of Scheduling Fair Competitions

02/07/2021
by   Siddharth Gupta, et al.
0

A fair competition, based on the concept of envy-freeness, is a non-eliminating competition where each contestant (team or individual player) may not play against all other contestants, but the total difficulty for each contestant is the same: the sum of the initial rankings of the opponents for each contestant is the same. Similar to other non-eliminating competitions like the Round-robin competition or the Swiss-system competition, the winner of the fair competition is the contestant who wins the most games. The Fair Non-Eliminating Tournament (Fair-NET) problem can be used to schedule fair competitions whose infrastructure is known. In the Fair-NET problem, we are given an infrastructure of a tournament represented by a graph G and the initial rankings of the contestants represented by a multiset of integers S. The objective is to decide whether G is S-fair, i.e., there exists an assignment of the contestants to the vertices of G such that the sum of the rankings of the neighbors of each contestant in G is the same constant k∈ℕ. We initiate a study of the classical and parameterized complexity of Fair-NET with respect to several central structural parameters motivated by real world scenarios, thereby presenting a comprehensive picture of it.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro