Multivariate Time Series Imputation with Variational Autoencoders

07/09/2019
by   Vincent Fortuin, et al.
0

Multivariate time series with missing values are common in many areas, for instance in healthcare and finance. To face this problem, modern data imputation approaches should (a) be tailored to sequential data, (b) deal with high dimensional and complex data distributions, and (c) be based on the probabilistic modeling paradigm for interpretability and confidence assessment. However, many current approaches fall short in at least one of these aspects. Drawing on advances in deep learning and scalable probabilistic modeling, we propose a new deep sequential variational autoencoder approach for dimensionality reduction and data imputation. Temporal dependencies are modeled with a Gaussian process prior and a Cauchy kernel to reflect multi-scale dynamics in the latent space. We furthermore use a structured variational inference distribution that improves the scalability of the approach. We demonstrate that our model exhibits superior imputation performance on benchmark tasks and challenging real-world medical data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset